Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.062
Filtrar
2.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725854

RESUMO

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Assuntos
Diosgenina/análogos & derivados , Glicólise , Neovascularização Patológica , Neoplasias Ovarianas , Saponinas , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Camundongos Nus , Camundongos , Angiogênese
3.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693852

RESUMO

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Assuntos
Apoptose , Cisplatino , Sinergismo Farmacológico , Inibidores de Histona Desacetilases , Ftalazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Cisplatino/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia
4.
Cell Genom ; 4(5): 100550, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38697125

RESUMO

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inibidores de Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Reparo de DNA por Recombinação/efeitos dos fármacos , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Masculino , Camundongos , Animais , Feminino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Predisposição Genética para Doença
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731844

RESUMO

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Próstata , Reparo de DNA por Recombinação , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína BRCA2/genética , Proteína BRCA2/deficiência , Metástase Neoplásica , Proteína BRCA1/genética , Proteína BRCA1/deficiência , Ftalazinas/uso terapêutico , Ftalazinas/farmacologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Piperazinas
6.
Trials ; 25(1): 301, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702828

RESUMO

BACKGROUND: Maintenance therapy with niraparib, a poly(ADP-ribose) polymerase inhibitor, has been shown to extend progression-free survival in patients with newly diagnosed advanced ovarian cancer who responded to first-line platinum-based chemotherapy, regardless of biomarker status. However, there are limited data on niraparib's efficacy and safety in the neoadjuvant setting. The objective of Cohort C of the OPAL trial (OPAL-C) is to evaluate the efficacy, safety, and tolerability of neoadjuvant niraparib treatment compared with neoadjuvant platinum-taxane doublet chemotherapy in patients with newly diagnosed stage III/IV ovarian cancer with confirmed homologous recombination-deficient tumors. METHODS: OPAL is an ongoing global, multicenter, randomized, open-label, phase 2 trial. In OPAL-C, patients will be randomized 1:1 to receive three 21-day cycles of either neoadjuvant niraparib or platinum-taxane doublet neoadjuvant chemotherapy per standard of care. Patients with a complete or partial response per Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) will then undergo interval debulking surgery; patients with stable disease may proceed to interval debulking surgery or alternative therapy at the investigator's discretion. Patients with disease progression will exit the study treatment and proceed to alternative therapy at the investigator's discretion. After interval debulking surgery, all patients will receive up to three 21-day cycles of platinum-taxane doublet chemotherapy followed by niraparib maintenance therapy for up to 36 months. Adult patients with newly diagnosed stage III/IV ovarian cancer eligible to receive neoadjuvant platinum-taxane doublet chemotherapy followed by interval debulking surgery may be enrolled. Patients must have tumors that are homologous recombination-deficient. The primary endpoint is the pre-interval debulking surgery unconfirmed overall response rate, defined as the investigator-assessed percentage of patients with unconfirmed complete or partial response on study treatment before interval debulking surgery per RECIST v1.1. DISCUSSION: OPAL-C explores the use of niraparib in the neoadjuvant setting as an alternative to neoadjuvant platinum-taxane doublet chemotherapy to improve postsurgical residual disease outcomes for patients with ovarian cancer with homologous recombination-deficient tumors. Positive findings from this approach could significantly impact preoperative ovarian cancer therapy, particularly for patients who are ineligible for primary debulking surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT03574779. Registered on February 28, 2022.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Indazóis , Terapia Neoadjuvante , Estadiamento de Neoplasias , Neoplasias Ovarianas , Piperidinas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Terapia Neoadjuvante/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Piperidinas/efeitos adversos , Piperidinas/administração & dosagem , Piperidinas/uso terapêutico , Indazóis/efeitos adversos , Indazóis/uso terapêutico , Indazóis/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Intervalo Livre de Progressão , Ensaios Clínicos Fase II como Assunto , Recombinação Homóloga , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/efeitos adversos , Piperazinas/efeitos adversos , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Fatores de Tempo
7.
Curr Opin Oncol ; 36(3): 174-179, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573207

RESUMO

PURPOSE OF REVIEW: This review is designed to highlight recent research efforts to optimize treatment strategies in men with advanced prostate cancer. RECENT FINDINGS: Recent research analyses have suggested an overall survival advantage to treating some men with newly identified metastatic prostate cancer with a "triplet" of androgen deprivation therapy, docetaxel, and an androgen receptor axis-targeted agent (ARAT), but further work remains to refine which men need this aggressive of a treatment approach. Randomized trials have led to the approval of poly(ADP-ribose) polymerase inhibitor/ARAT agent combinations for some men with metastatic castration resistant prostate cancer, but the applicability of this approach to the growing number of men receiving combinations of systemic therapy in the castration-sensitive setting is unclear. Trials to refine use of prostate-specific membrane antigen (PSMA)-directed radiopharmaceuticals are ongoing, while novel treatment approaches targeting mechanisms driving advanced prostate cancer continue to be explored. SUMMARY: Ongoing research focuses on refining the best combination and sequence of treatments for men with advanced prostate cancer. Future questions remain about use of existing therapies, and novel treatment approaches need to be developed.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/uso terapêutico , Docetaxel , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Compostos Radiofarmacêuticos
8.
Cancer Med ; 13(7): e7149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572951

RESUMO

BACKGROUND: Poly (ADP-ribose) polymerase (PARP) inhibitors have been increasingly used in the treatment of ovarian cancer, with BRCA positivity and homologous recombination deficiency (HRD) being common biomarkers used for predicting their efficacy. However, given the limitations of these biomarkers, new ones need to be explored. METHODS: This retrospective study included 181 ovarian cancer patients who received olaparib or niraparib at two independent hospitals in Japan between May 2018 and December 2022. Clinical information and blood sampling data were collected. Patient characteristics, treatment history, and predictability of treatment duration based on blood data before treatment initiation were examined. RESULTS: High-grade serous carcinoma, BRCA positivity, HRD, and maintenance therapy after recurrence treatment were observed more frequently in the olaparib group than in the niraparib group. The most common reasons for treatment interruption were anemia, fatigue, and nausea in the olaparib group and thrombocytopenia in the niraparib group. Regarding response to olaparib treatment, complete response to the most recent treatment, maintenance therapy after the first chemotherapy, high-grade serous carcinoma, and germline BRCA positivity were observed significantly more frequently among responders than among non-responders. Furthermore, neutrophil counts were significantly higher among responders than among non-responders. CONCLUSIONS: Inflammation-related blood data, such as neutrophil count, obtained at the initial pre-treatment visit might serve as potential predictors for prolonged olaparib treatment. While this study offers valuable insights into potential indicators for prolonged olaparib treatment, it underscores the need for more expansive research to strengthen our understanding of PARP inhibitors and optimize treatment strategies in ovarian cancer.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Japão , Ribose/uso terapêutico , Estudos Retrospectivos , Mutação , Antineoplásicos/efeitos adversos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Biomarcadores , Poli(ADP-Ribose) Polimerases , Carcinoma/tratamento farmacológico , Ftalazinas/efeitos adversos
9.
J Ovarian Res ; 17(1): 70, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561819

RESUMO

OBJECTIVES: This retrospective study aims to evaluating the subsequent management and outcomes after first-line PARPi progression in Chinese ovarian cancer population. METHODS: Clinical and pathologic variables, treatment modalities, and outcomes were assessed. We investigated the subsequent management and outcomes after first-line PARPi progression. The objective response rate (ORR) and disease control rate (DCR) parameters were evaluated to determine the response to subsequent chemotherapy. For the survival analyses, progression-free survival 1 (PFS1), PFS2, overall survival (OS) and PFS2 - PFS1 were analysed. RESULTS: A total of 124 patients received PARPi maintenance treatment after first-line chemotherapy during the study period in our center. 44 of them (35.5%) experienced a recurrence. The median duration of PARPi in these patients was 11.1 months (range: 1.2-75.1 months). A total of 40 patients (40/44, 90.9%) received subsequent chemotherapy with 35 (35/44, 79.5%) and 5 (5/44, 11.4%) patients received platinum-based and non-platinum-based chemotherapy in our center. 2 patients (4.5%) received target therapy and other 2 patients (4.5%) received best supportive care. 27.3% (12/44) patients received secondary cytoreduction surgery (SCS). After subsequent chemotherapy, 14 patients received PARPi retreatment as maintenance therapy. In patients who received platinum-based regimens (n = 35), 23 of 35 patients (65.7%) had complete/partial response (CR/PR), 8 of 35 (22.9%) had stable disease (SD), and 4 of 35 (12.1%) had progressive disease (PD). The ORR and DCR of patients who received subsequent chemotherapy was 65.7% and 88.6%, respectively. 15 patients (57.7%, 15/26) were reported to be platinum resistant with a platinum-free interval (PFI) of < 6 months in patients whose platinum sensitivity of the second line platinum-based regimens was evaluable. Patients who received SCS after PARPi resistant associated with a borderline better PFS2 (median PFS2: 41.9 vs. 29.2 months, P = 0.051) and a non-significantly increased PFS2-PFS1 (median PFS2-PFS1: 12.2 vs. 9.8 months, P = 0.551). Patients with a PFI ≥ 12 months had a significantly better PFS2 (median PFS2: 37.0 vs. 25.3 months, P < 0.001) and a tendency towards a better PFS2-PFS1 than those with a PFI < 12 months (median PFS2-PFS1: 11.2 vs. 8.5 months, P = 0.334). A better PFS2 was observed in patients who received second PARPi maintenance therapy (median PFS2 of 35.4 vs. 28.8 months); however, the difference was not statistically significant (P = 0.200). A better PFS2-PFS1 was observed in patients who received second PARPi maintenance therapy (median PFS2-PFS1: 13.6 vs. 8.9 months, P = 0.002) than those without. CONCLUSIONS: In summary, some degree of resistance to standard subsequent platinum and non-platinum chemotherapy is noted in the entire cohort. A trend towards higher benefit from subsequent chemotherapy after first-line PARP inhibitors progression was observed in the PFI ≥ 12 months subgroup than those with PFI < 12 months. PARPi retreatment as maintenance therapy and SCS can be offered to some patients with PARPi resistance.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Estudos Retrospectivos , Neoplasias Ovarianas/patologia , Intervalo Livre de Progressão , Análise de Sobrevida , Platina/farmacologia , Platina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico
10.
PLoS One ; 19(4): e0302130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625917

RESUMO

PARP inhibitors have been developed as anti-cancer agents based on synthetic lethality in homologous recombination deficient cancer cells. However, resistance to PARP inhibitors such as olaparib remains a problem in clinical use, and the mechanisms of resistance are not fully understood. To investigate mechanisms of PARP inhibitor resistance, we established a BRCA1 knockout clone derived from the pancreatic cancer MIA PaCa-2 cells, which we termed C1 cells, and subsequently isolated an olaparib-resistant C1/OLA cells. We then performed RNA-sequencing and pathway analysis on olaparib-treated C1 and C1/OLA cells. Our results revealed activation of cell signaling pathway related to NAD+ metabolism in the olaparib-resistant C1/OLA cells, with increased expression of genes encoding the NAD+ biosynthetic enzymes NAMPT and NMNAT2. Moreover, intracellular NAD+ levels were significantly higher in C1/OLA cells than in the non-olaparib-resistant C1 cells. Upregulation of intracellular NAD+ levels by the addition of nicotinamide also induced resistance to olaparib and talazoparib in C1 cells. Taken together, our findings suggest that upregulation of intracellular NAD+ is one of the factors underlying the acquisition of PARP inhibitor resistance.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Piperazinas , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , NAD , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Ftalazinas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteína BRCA1
11.
Sci Rep ; 14(1): 8797, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627415

RESUMO

Deletions of chromosome 1p (del(1p)) are a recurrent genomic aberration associated with poor outcome in Multiple myeloma (MM.) TRIM33, an E3 ligase and transcriptional co-repressor, is located within a commonly deleted region at 1p13.2. TRIM33 is reported to play a role in the regulation of mitosis and PARP-dependent DNA damage response (DDR), both of which are important for maintenance of genome stability. Here, we demonstrate that MM patients with loss of TRIM33 exhibit increased chromosomal instability and poor outcome. Through knockdown studies, we show that TRIM33 loss induces a DDR defect, leading to accumulation of DNA double strand breaks (DSBs) and slower DNA repair kinetics, along with reduced efficiency of non-homologous end joining (NHEJ). Furthermore, TRIM33 loss results in dysregulated ubiquitination of ALC1, an important regulator of response to PARP inhibition. We show that TRIM33 knockdown sensitizes MM cells to the PARP inhibitor Olaparib, and this is synergistic with the standard of care therapy bortezomib, even in co-culture with bone marrow stromal cells (BMSCs). These findings suggest that TRIM33 loss contributes to the pathogenesis of high-risk MM and that this may be therapeutically exploited through the use of PARP inhibitors.


Assuntos
Mieloma Múltiplo , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo do DNA , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Fatores de Transcrição
12.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578205

RESUMO

Poly(ADP-ribose)ylation or PARylation by PAR polymerase 1 (PARP1) and dePARylation by poly(ADP-ribose) glycohydrolase (PARG) are equally important for the dynamic regulation of DNA damage response. PARG, the most active dePARylation enzyme, is recruited to sites of DNA damage via pADPr-dependent and PCNA-dependent mechanisms. Targeting dePARylation is considered an alternative strategy to overcome PARP inhibitor resistance. However, precisely how dePARylation functions in normal unperturbed cells remains elusive. To address this challenge, we conducted multiple CRISPR screens and revealed that dePARylation of S phase pADPr by PARG is essential for cell viability. Loss of dePARylation activity initially induced S-phase-specific pADPr signaling, which resulted from unligated Okazaki fragments and eventually led to uncontrolled pADPr accumulation and PARP1/2-dependent cytotoxicity. Moreover, we demonstrated that proteins involved in Okazaki fragment ligation and/or base excision repair regulate pADPr signaling and cell death induced by PARG inhibition. In addition, we determined that PARG expression is critical for cellular sensitivity to PARG inhibition. Additionally, we revealed that PARG is essential for cell survival by suppressing pADPr. Collectively, our data not only identify an essential role for PARG in normal proliferating cells but also provide a potential biomarker for the further development of PARG inhibitors in cancer therapy.


Assuntos
Antineoplásicos , Poli Adenosina Difosfato Ribose , Sobrevivência Celular , Fase S , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia
13.
Sci Rep ; 14(1): 7519, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589490

RESUMO

Homologous recombination (HR) repairs DNA damage including DNA double-stranded breaks and alterations in HR-related genes results in HR deficiency. Germline alteration of HR-related genes, such as BRCA1 and BRCA2, causes hereditary breast and ovarian cancer (HBOC). Cancer cells with HR deficiency are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents. Thus, accurately evaluating HR activity is useful for diagnosing HBOC and predicting the therapeutic effects of anti-cancer agents. Previously, we developed an assay for site-specific HR activity (ASHRA) that can quantitatively evaluate HR activity and detect moderate HR deficiency. HR activity in cells measured by ASHRA correlates with sensitivity to the PARP inhibitor, olaparib. In this study, we applied ASHRA to lymphoblastoid cells and xenograft tumor tissues, which simulate peripheral blood lymphocytes and tumor tissues, respectively, as clinically available samples. We showed that ASHRA could be used to detect HR deficiency in lymphoblastoid cells derived from a BRCA1 pathogenic variant carrier. Furthermore, ASHRA could quantitatively measure the HR activity in xenograft tumor tissues with HR activity that was gradually suppressed by inducible BRCA1 knockdown. The HR activity of xenograft tumor tissues quantitatively correlated with the effect of olaparib. Our data suggest that ASHRA could be a useful assay for diagnosing HBOC and predicting the efficacy of PARP inhibitors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Ovarianas , Piperazinas , Humanos , Feminino , Recombinação Homóloga , Proteína BRCA1/genética , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Antineoplásicos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Poli(ADP-Ribose) Polimerases/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , DNA/uso terapêutico
14.
Nat Commun ; 15(1): 2862, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580648

RESUMO

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.


Assuntos
Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/genética , Proteína BRCA2/genética , DNA/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos
15.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580335

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecological malignancy, with limited treatment options after failure of standard therapies. Despite the potential of poly(ADP-ribose) polymerase inhibitors in treating DNA damage response (DDR)-deficient ovarian cancer, the development of resistance and immunosuppression limit their efficacy, necessitating alternative therapeutic strategies. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) represent a novel class of inhibitors that are currently being assessed in preclinical and clinical studies for cancer treatment. METHODS: By using a PARG small-molecule inhibitor, COH34, and a cell-penetrating antibody targeting the PARG's catalytic domain, we investigated the effects of PARG inhibition on signal transducer and activator of transcription 3 (STAT3) in OVCAR8, PEO1, and Brca1-null ID8 ovarian cancer cell lines, as well as in immune cells. We examined PARG inhibition-induced effects on STAT3 phosphorylation, nuclear localization, target gene expression, and antitumor immune responses in vitro, in patient-derived tumor organoids, and in an immunocompetent Brca1-null ID8 ovarian mouse tumor model that mirrors DDR-deficient human high-grade serous ovarian cancer. We also tested the effects of overexpressing a constitutively activated STAT3 mutant on COH34-induced tumor cell growth inhibition. RESULTS: Our findings show that PARG inhibition downregulates STAT3 activity through dephosphorylation in ovarian cancer cells. Importantly, overexpression of a constitutively activated STAT3 mutant in tumor cells attenuates PARG inhibitor-induced growth inhibition. Additionally, PARG inhibition reduces STAT3 phosphorylation in immune cells, leading to the activation of antitumor immune responses, shown in immune cells cocultured with ovarian cancer patient tumor-derived organoids and in immune-competent mice-bearing mouse ovarian tumors. CONCLUSIONS: We have identified a novel antitumor mechanism underlying PARG inhibition beyond its primary antitumor effects through blocking DDR in ovarian cancer. Furthermore, targeting PARG activates antitumor immune responses, thereby potentially increasing response rates to immunotherapy in patients with ovarian cancer.


Assuntos
Glicosídeo Hidrolases , Neoplasias Ovarianas , Fator de Transcrição STAT3 , Animais , Feminino , Humanos , Camundongos , Linhagem Celular , Imunidade , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo
16.
Bioconjug Chem ; 35(4): 551-558, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591781

RESUMO

Poly(ADP-ribose) polymerase inhibitors (PARPi) have been approved for once or twice daily oral use in the treatment of cancers with BRCA defects. However, for some patients, oral administration of PARPi may be impractical or intolerable, and a long-acting injectable formulation is desirable. We recently developed a long-acting PEGylated PARPi prodrug, PEG∼talazoparib (TLZ), which suppressed the growth of PARPi-sensitive tumors in mice for very long periods. However, the release rate of TLZ from the conjugate was too fast to be optimal in humans. We prepared several new PEG∼TLZ prodrugs having longer half-lives of drug release and accurately measured their pharmacokinetics in the rat. Using the rates of release of TLZ from these prodrugs and the known pharmacokinetics of free TLZ in humans, we simulated the pharmacokinetics of the macromolecular prodrugs and released TLZ in humans. From several possibilities, we chose two conjugates that could be administered intravenously every 2 weeks and maintain TLZ within its known therapeutic window. We describe situations where the PEG∼TLZ conjugates would find utility in humans and suggest how the intravenously administered long-acting prodrugs could in fact be more effective than daily oral administration of free TLZ.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Camundongos , Ratos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Pró-Fármacos/farmacologia , Neoplasias/tratamento farmacológico
17.
JCO Precis Oncol ; 8: e2300567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579192

RESUMO

PURPOSE: There are limited data available on the real-world patterns of molecular testing in men with advanced prostate cancer. We thus sought to evaluate next-generation sequencing (NGS) testing in the United States, focused on single versus serial NGS testing, the different disease states of testing (hormone-sensitive v castration-resistant, metastatic vs nonmetastatic), tissue versus plasma circulating tumor DNA (ctDNA) assays, and how often actionable data were found on each NGS test. METHODS: The Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort clinical-genomic database was used for this retrospective analysis, including 1,597 patients across 15 institutions. Actionable NGS data were defined as including somatic alterations in homologous recombination repair genes, mismatch repair deficiency, microsatellite instability (MSI-high), or a high tumor mutational burden ≥10 mut/MB. RESULTS: Serial NGS testing (two or more NGS tests with specimens collected more than 60 days apart) was performed in 9% (n = 144) of patients with a median of 182 days in between test results. For the second NGS test and beyond, 82.1% (225 of 274) of tests were from ctDNA assays and 76.1% (217 of 285) were collected in the metastatic castration-resistant setting. New actionable data were found on 11.1% (16 of 144) of second NGS tests, with 3.5% (5 of 144) of tests detecting a new BRCA2 alteration or MSI-high. A targeted therapy (poly (ADP-ribose) polymerase inhibitor or immunotherapy) was given after an actionable result on the second NGS test in 31.3% (5 of 16) of patients. CONCLUSION: Repeat somatic NGS testing in men with prostate cancer is infrequently performed in practice and can identify new actionable alterations not present with initial testing, suggesting the utility of repeat molecular profiling with tissue or blood of men with metastatic castration-resistant prostate cancer to guide therapy choices.


Assuntos
Antineoplásicos , DNA Tumoral Circulante , Neoplasias da Próstata , Masculino , Humanos , Estudos Retrospectivos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , DNA Tumoral Circulante/genética , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala/métodos
18.
Sci Signal ; 17(831): eadh1922, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593154

RESUMO

Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Androgênios , Morte Celular/genética , Linhagem Celular Tumoral , Dano ao DNA , Lipídeos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo
19.
Cancer Lett ; 589: 216820, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574883

RESUMO

One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.


Assuntos
Antineoplásicos , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Gencitabina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral
20.
Oncol Res ; 32(5): 831-847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686048

RESUMO

Ovarian cancer is among the most lethal gynecological cancers, primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy. Drug resistance (DR) poses the most significant challenge in treating patients with existing drugs. The Food and Drug Administration (FDA) has recently approved three new therapeutic drugs, including two poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib and niraparib) and one vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) for maintenance therapy. However, resistance to these new drugs has emerged. Therefore, understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management. In this review, we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA